
Classifier
Algorithms

And Swift implementations

> whoami

- Software Engineer at Softserve
Poland for 1½ year

- 5 years of experience with mobile
development Android & iOS

- 2 years as Data Science researcher
at Campinas State University (Brazil)

Chapter 1 (25 minutes)

Introduction to AI → ML → Classifiers → Supervised Methods → Trees

Chapter 2 (35 minutes)

Challenges of implementing your algorithms in Swift

Agenda

Chapter 1
A brief history of ML

1.1 What is Artificial Intelligence?

Has to be this guy, right?

No. It's a general name to label a few
Computer Science research fields:

- Natural Language Processing
- Computer Vision
- Machine Learning
-

1.2 Then what is Machine Learning?

For sure it's this guy

Algorithms that use large data and
statistics to make predictions

Data
~Mythical
Black box
Creature~

Predictions

1.3 Let's talk about Data

1.3 Let's talk about Data

1. Labeled vs Unlabeled
2. Feature Scaling
3. Sparse
4. Curse of dimensionality

1.3.1 Labeled Data versus Unlabeled data

Labeled = we know Y, so we
should use a supervised
algorithm

Unlabeled = we do not Y, so we
should use an unsupervised
algorithm*

* OR PAY SOMEONE TO MANUALLY LABEL THEM

X₁ X₂ X₃ X₄ Y?

1.3.2 Feature scaling

- Data should be normalized when your algorithm uses calculations with numbers, like
euclidean distance or stochastic gradient descent

- Tree ensemble methods, for example, do not need feature scaling
- There are many types of normalization methods, the most common is min-max
- Data types matter - Unsigned Int, Int8, Int16, Float, Double, ...

(-124.3, 12512.4) → (-1, 1)
[true, false] → [0,1]
["Apple", "Pear", "Banana"] → [0,1,2]

1.3.3 Sparse Data

17 1's versus 4 0's

Balanced outputs

Duplicates removed

*What to do with Missing Data?

1.3.4 Curse of dimensionality

- A lot of dimensions brings Sparsity (quick tip: BAD)
- Examine the correlation of the dimensions against the output,

and kick insignificant dimensions
- Principal component analysis
- Feature Engineering

1.3.4.1 Correlation matrix

1.4 Let's talk about predictions

1. Classification versus Regression
2. Data splitting
3. Metrics

1.4.1 Classification versus Regression

1.4.2 Data Splitting

Training set: use to train your model (~60%)
Test set: use to measure and optimize your models (~20%)
Validation set: don't touch this guy. Ever* (~20%)

"The training set is used to fit the models; the validation set is used to estimate prediction error for
model selection; the test set is used for assessment of the generalization error of the final chosen
model. Ideally, the test set should be kept in a “vault,” and be brought out only at the end of the
data analysis." - Elements of Statistical Learning, Travor Hastie

Ways to measure how good your classifier is.
Accuracy = TP+TN / ALL
Precision, Recall, Specificity, F1, Kapa, ...

1.4.3 Metrics

1.4.4 Overfitting

1.5 Supervised Classifiers

- Random Forest
- Gradient Boosting Machines
- Naive Bayes
- Support Vector Machines
- ...

1.5.1 Why Random Forest?

Widely used - Almost half of data mining competition are won by
using some variants of tree ensemble methods

Invariant to scaling of inputs, so you do not need to do careful
features normalization

Learn higher order interaction between features

Can be scaled, and are used in the industry

1.5.1.1 The algorightm

- Not decision trees: each tree
handles a random subset of the
features (mtry parameter in
python, usually sqrt)

- Leaf nodes can have a
minimum number of instances

- Features can have different
weights

- Each tree is built with a random
subset of the database

1.5.2 Cross Validation
In order to validate algorightms, researches usually apply K-fold cross validation.

Validating a random Kᵗʰ part of the dataset against the trained rest, K times.

Chapter II:
Swift implementations

2 - Biggest challenges in Swift

- Generics
- Matrixes
- Optional parameters

2.1.1 - Having a standard data type

Create extensions of this protocol, for the types you want

2.1.2 - A generic classifier

2.1.3 - A concrete implementation (Why?)

2.1.3.1 Problems of generic types

ViewControllers cannot be generic!! They never load from
storyboard, and the app crashes

2.1.4 - An algorithm

2.2 - Matrixes

The Swift Array implementation have super slow allocation/deallocation

NSArray is faster, but still very slow

C pointers are the fastest, but memory management is up to you.

UnsafeMutablePointers do not have most of the C memory functions, like realloc, memcpy,
memmove, (...), and will wield unexpected results

UnsafeMutableRawPointers should be the best option. Bonus, they work with Accelerate
framework for advanced matrix operations (inverse, transpose, multiply, eigen values, ...)

2.2.1 - Pointer examples

2.2.2 - Element get/set

2.2.3 - Delete routine

2.3 - Optional parameters

Questions & Answers

Thank you very much for your participation.

Lucas Farris - lfarris@softserveinc.com

mailto:lfarris@softserveinc.com

